International Journal on Information Sciences & Computing, Vol. 7 No. 1 January 2013 14

AN ADAPTIVE META-SCHEDULER FOR DATA-INTENSIVE APPLICATIONS IN GRID

ENVIRONMENT

Vimala.S', Sasikala.T2

"Anna University, Chennai.
2Principal, SRR Engineering College, Chennai.
Email; 1vimala_aishwarya@yahoo.com, 2sasi_madhu2k2@yahoo.co.in

Abstract

Grid computing becomes the de facto platform for scientific computations that incorporates geographically and
organizationally dispersed, heterogeneous resources. These scientific and data intensive computations require large and
multiple datasets to be transferred to the data storage and compute nodes. As there is rapid growth in communication
through internet, the data transfer becomes the major bottleneck for the end-to-end performance for these scientific
applications. A most practical way of increasing the throughput is using multiple parallel streams. Currently GridFTP
protocol is designed for point-to-single point parallel data transfer. However the issue of simultaneous -multiple files to
multiple locations is not studied so far. In this paper, we design an optimized Meta-scheduler by which multiple files can
be transferred simultaneously to the destined compute nodes. A LBLC scheduling algorithm is designed to transfer multiple
files to multiple locations simultaneously. A greedy method is followed at every stage. The Optimized proposed model

gives better results compared to the non-optimized data transfer.

Keywords Grid computing, GridFTP, Optimization, Parallel TCP streams, Prediction, Data-dictionary.

I. INTRODUCTION

Grid computing, most simply stated is distributed
computing taken to the next evolutionary level.
Scientific experiments involve geographically distributed
heterogeneous resources such as computational
resources, scientific instruments, databases and
applications. These experiments require large amount
of data in terms of tera bytes to be transferred over
wide area network for their computations. Though
network initiatives, such as Atlas project and Tera grid
provide high speed network connectivity to their users,
yet the promised speed is not achieved due to
processor limitations, insufficient network bandwidth,
TCP tuning and disk performance bottle neck [11].

Grid Computing environment becomes a reality,
which provides a demand drivers, reliable, inexpensive
power for these users. Globus Grid Forum is working
on protocols and standards to realize the importance
of extreme high performance related issues. The GGF
recommends to have high speed parallel data transfer
and to store data near to the compute nodes.

Currently, GridFTP is an accepted data transport
protocol of Grid community. GridFTP has the following
features of solving the problems of older TCP
communication. First, Multiple TCP connections can be
established in parallel. Second, TCP socket buffer size

can be negotiated between GridFTP server and client.
However GridFTP is designed for point-to-point reliable
data transfer [3][8].

Scientific and data intensive applications require
multiple files to be transferred to multiple locations
simultaneously for their valuable computations. The
current GridFTP, though it supports parallel TCP
connections, still higher speed is required to meet the
demands of transferring large and multiple datasets [1].
Therefore, A Adaptive Meta-Scheduler is designed
which receives multiple files from the users
simultaneously and which does optimized parallel data
transfer to the correct and intended compute nodes.

The architecture contains a Scheduler/Optimizer
and GridFTP servers. The Meta-Scheduler opens
multiple sockets to receive files simultaneously from the
users. It then uses Location Based Least Cost (LBLC)
scheduling algorithm which distributes files to GridFTP
servers with fewer active connections relative to their
destination IP [9][11]. A mathematical model is used to
predict the number of parallel streams (N) the data to
be striped at each GridFTP server. The GridFTP server
establishes multiple (N) TCP connections in parallel.
Since ‘N’ TCP connections are established, the
throughput is N times larger than single TCP
connection [3]. Here, the user is intended to give only
the name of the executable, source address and

Vimala et al. : An Adaptive Meta-scheduler for Data-intensive Applications ... 15

number of files to be transferred. This optimization
technique is believed to be unique in terms of
multiple-parallel file transfer.

In section I, we impart the related work regarding
parallel data transfer, scheduling and GridFTP. In
section 1l we discuss the design of our system. Section
IV, shows the experimental results. Finally, in section
V, we discuss the conclusion of our study.

IIl. RELATED WORK

There is limited number of studies that try to find
out optimal number of TCP streams that are required
for data transfer. Hacker[3] discuss how multistream
TCP connections can improves aggregate TCP
bandwidth. He also address the question how to select
maximum number of sockets needed to maximize TCP
throughput and demonstrates how packet loss rate and
bandwidth affects Maximum Segment Size(MSS). In
paper [4] PSockets were designed to exploit network
stripping. The data is partitioned across several open
sockets. Experiments were done using PSockets over
Abilene network. C++ library were developed to
incorporate network stripping. H.Sivakumar uses 12
TCP connections to improve the performance from
10Mb/sec to 75Mb/sec. Another study [5] on improving
performance in High speed networks, uses sender side
congestion control algorithm.

The paper[6], the mathematical equation is
developed BW,=MSS/RTT,, n/P, C; 2b/3 where RTT
is the round trip time and P, Packet loss, C; is a
constant range (0,1). b is the number of packets that
are acknowledged by a received message. The effect
of cross traffic is considered as a challenging factor
when trying to estimate the throughput. The paper [3]
addresses how to determine the number of TCP
connections needed to maximize throughput while
avoiding network congestion. Packet loss is taken as
major issue in this. Hacker [3] claims that even when
the packet loss increases due to factors like lockout,
congestion or convergence, the overall throughput is
greater than single TCP connection.

In this paper[2], the optimal parameters in terms
of number of TCP connections and TCP socket buffer
size is investigated. Takeshi_lIto discuss about GridFTP
protocol which Globus Grid Forum is trying to
standardize for parallel data transfer. He also discuss
how socket buffer size can be configured by client and
server. This paper [7] presents Fast Parallel file

replication. Raut_lzmailov discuss about
point-to-multipoint data Replication at multiple sites. He
designs various tree structures and demonstrates how
user data can be replicated at multiple sites.

In this paper[8] an algorithm is designed for
economy-based scheduling of distributed data-Intensive
applications on data grid. The model takes into account
the cost and times for transferring datasets required for
a job from different data hosts to the compute resource
on which the job will be executed and for its
processing. The algorithm is designed to minimize the
cost or time depending on the user’s preferences.

Srikumar[9] proposes a Grid Broker that mediates
access to distributed resources. The broker supports a
declarative and dynamic parametric programming
model for creating grid applications.

In this paper [1], Dengpon designed a service
that predicts the optimal number of parallel TCP
streams and a provision of estimated time of throughput
for a specific data transfer. He used stork Data
scheduler to improve the performance of data transfer
jobs submitted to it. There are also other services and
tools that try to give an estimate for number of TCP
connections required for maximum throughput. In our
approach, we propose to transfer multiple Files
simultaneously from a single source to single or
multiple destination based on destination IP and cost.

ll. PROPOSED MODEL

In this section, a model is proposed which
improves the data transfer time based on referred
models. Fig 1. shows the model of a Grid environment
that consists of computational resources, GridFTP
servers, Optimizer and scheduler. The Grid users
transfer large and multiple jobs to the computing
resources for their effective computations. Discovering
and allocating resources is of more crucial in Grid
Environment. Schedulers play a major role in
partitioning of jobs, parallel execution of jobs, allocating
resources and for service-level agreements.

Consider a model for scheduling independent
jobs on grid. Each job requires a set
Fi={fj1,fj2 ... fiK} of K datasets. The datasets can
be files. The overall time taken to execute the jobs is
the sum of the execution time and the time taken to
transfer each of the K files from the respective user or

16 International Journal on Information Sciences & Computing, Vol. 7 No. 1 January 2013

storage nodes to the compute nodes. The computation
time is denoted by tck and the transfer time for the kth
dataset fik is denoted by tijk, then the total time
required for executing the job j fj=tck+ ttk where
flik=Response time(djk) + Size(fik)/ BW(Linkdjk).
BW(Linkdjk) is the available bandwidth for the network
connection between the data host djk and the compute
resource r. The economic cost for executing the job
J, € is given by ej=ejr+ effkr where efjkr=Access
cost(djk) + Size(fik) * Cost per unit size(Linkdjkr).[9]
where ejr is the processing cost of the job j on the
compute node r and cost of transferring the dataset
fi by effk. Thus minimizing data transfer time,
minimizes the total execution time thereby minimizing
the total economic cost.

In this paper, the Meta-Scheduler schedules
multiple files simultaneously to the compute nodes. This
model minimizes the data-transfer time thereby
minimizing the overall execution time. The
Meta-Scheduler is designed using the network
modeling techniques proposed in [1],[2],[8],[9].

The design presents three scenarios. Locating
the compute node, Prediction of Number of TCP
streams and Scheduling.

User/Client Meta Scheduler/

The Optimizer gathers information about the
available compute resources through a resource
information service. This information is stored in the
data directory. The scheduler requests for name of the
executable resource, source address and number of
files to be transferred from the user. It then receives
multiple files simultaneously by opening multiple
sockets. The Scheduler, scans the data for the
compute resources suitable for the job in the data
dictionary and decides on where to submit the job
based on the availability, cost of the compute resource,
the location, access and transfer costs of the data
required for the job. The resources nearest to the
source with minimum execution time is selected as the
destined compute node.

Table | shows the sample data of the data
dictionary. The actual information about locations of
compute nodes, the execution time and utilization cost
are levied by the service provider. To reduce the
complexity of mapping the jobs to the compute nodes,
the data in the data dictionary are sorted in ascending
order based on least cost and location.

The Optimizer predicts the number of streams the
data to be striped at GridFTP server. The Optimizer
transfers different sampling size of data for each file.
A minimum of three sampling of data transfer is tried

Step 4 Opens muftiple TCP Streams

b |
Grid FTP server 1

TalZ

/

Grid FTP server 2

.f""-"t‘_‘“
Grid FTP server 3

Receives multiple files from user
finds GridFTP server and number
of Streams required

Fig. 1. Architecture of the Optimization Service.

Vimala et al. : An Adaptive Meta-scheduler for Data-intensive Applications ...

for correct selection of parallelism levels. It measures

the throughput for every data transfer. The
mathematical equation
Th< (MSS/RTTY*(cAp) 2)
TABLE |
Location Execution
Resource in Ti Execution| GridFTP [Threshold
ime
Terms Cost ($) | Server (ms)
(ms)
of (ms)
1 4100 80 31198 1 48
2 6800 54 76054 2 33
3 8100 120 500,000 3 72

is used for calculating the number of parallel streams.
Where (Th) is the throughput. The MSS is Maximum
transmission unit (MTU) size minus the TCP header
size. The RTT is the time taken for the segment to
reach the receiver and time taken by the
acknowledgment packet to return to the sender. The
packet loss rate (p) is the ratio of missing packets over
total number of packets, ¢ is a constant and n is the
number of parallel streams.

The number of parallel streams for every iteration
of sampling is doubled and corresponding throughput
is observed. The sampling is stopped when the
throughput results constant even if the number of
streams increases. The number of streams at which
throughput becomes constant is predicted as the
required number of streams the data to be striped at
GridFTP server. After locating the node and predicting
the number of TCP streams, the job is dispatched to
selected compute resource.

However, the compute node may get overloaded
if all the files are submitted to the same optimized
resource. Therefore, a threshold is fixed. If the waiting
time for the job to be submitted is greater than the
threshold the next compute node in the data dictionary
is selected as the compute node.

The compute node thus uses the dataset
received from the user and does its computational task.
After completion of the tasks, the results are sent back
to the scheduler host. The Location Based Least Cost
(LBLC) scheduling Algorithm is shown in Algorithm I.

© 00 N o a1 B~ W DD

—_ - A kA e ek o
o N oo o A W D s+ O

19
20
21
22
23
24
25
26
27
28
29

30
31

32

Algorithm 1: LBLC Scheduling Algorithm

Get source address && name of executable

&&number of files to be transferred
Create n sockets

Bind the sockets to empty ports
While n>0 do

process<— fork()

Listen to the port

if file

Accept connection

receive file

CALL select node

CALL optimized parameter streams
Strip files by n

Transfer file

receive results

Close connection

endwhile

Select node :

while nearest && least_cost || nearest &&

least_execution_time

if (waiting_time > threshold)
goto selectnode

else

return selected node

until

optimized parameter streams:
threshold « o

Stream No1 «1

Calculate throughput1
repeat

StreamNo2 « 2 StreamNof1
Calculate throughput2
StreamNo1 <« StreamNo2

throughput <« throughput?2

18 International Journal on Information

33 until throughput2>= throughput1
34 n= StreamNo?2
35 return n

IV. EXPERIMENTS AND RESULTS

The experiments were based on the architecture
shown in Fig.1.The scheduler requests for name of the
executable resource, source address and number of
files to be transferred from the user. It then, opens
multiple sockets equal to that of number of files. The
scheduler then, scans the data dictionary and maps the
fle to the best suitable compute node based on
Location and Least cost. The Location (distance to the
compute node) is given in terms of millisec. Cost for
execution in terms of dollars ($) and time for
transferring data over network links between the
compute resources and the user in millisec. Two
constraints are considered during job scheduling. The
nearest resource with the least cost or nearest resource
with least execution time. Based on users need the
resources are selected from the data directory.

The optimizer sends sample data to the selected
computed node. A minimum of three sample size of
data is sent and the corresponding throughput and time
is measured. The number of TCP streams is doubled
for each iteration of sample data. The RTT found to
be stable from 100MB. Therefore the sampling is
stopped. The transfer time and throughput is found to
be better at sample size 100MB and TCP stream 4.
The file is therefore stripped by four at GridFTP server
and transferred to the selected node. The same
procedure is followed for all files received.

Another criteria is, the compute node may get
overloaded if all the files are submitted to the same

1200
1000 e
800 1 —— Optimized
Throughput

— No

Throughput (Mbps)
D
(=]
o

400 - Moo
200
0 . ‘
10 25 50 100
Data size(MB)

Fig. 2 Sample size vs Throughput

Sciences & Computing, Vol. 7 No. 1 January 2013

30 -

25

20 — Non-
M 15 Optimized
¢ iy
% 10 — Optimiz ed
E Time
= 5

0

10 25 50 100
Data size(MB)

Fig. 3 Sample size vs Time

optimized resource. Therefore, a threshold is fixed. If
the waiting time of the file to be submitted is greater
than the threshold the next compute node in the data
dictionary is selected as the compute node. Fig 2
shows the sample size versus Throughput.

Fig 3. shows sample size versus Time. The time
for the corresponding sample size is measured. These
graphical figures compares throughput and time for
optimized and non-optimized transfer.

For non-optimized transfer , a single TCP stream
is used for transferring multiple files. The various
sample data as taken for optimized data transfer is
transferred and the throughput and time is measured.
Fig 2 shows the throughput comparison for optimized

25 50 100 150 200

Data size (MB)

o =N WROO N OO

Fig. 4 Sample size vs Number of TCP streams
and non-optimized transfer.

Fig 4. shows the number of streams for the
respective sample size. The experimental results shows
that optimized throughput increases almost 9 times to
that of non-optimized technique. From the experimental
results the execution time and throughput of our

Vimala et al. : An Adaptive Meta-scheduler for Data-intensive Applications ... 19

optimized technique is found to be better compared to
non-optimized technique.

V. CONCLUSION

We design an Adaptive Meta-Scheduler. This
scheduler does simultaneous multiple file transfer,
selection of best compute resource in terms of
execution time as-well-as utilization cost., stripping files
into multiple streams. The scheduler uses LBLC
algorithm for locating the compute node. Multiple files
are received simultaneously from the user and based
on the location, execution time, cost for execution, the
fles are assigned to the Grid FTP servers. A
mathematical equation is used for predicting the
number of parallel TCP streams the file to be striped
at the Grid FTP server for achieving optimized
throughput. A greedy strategy is followed at every
stage. This Optimized Meta-Scheduler decreases total
transfer time required for large number of data or file
transfer submitted to it significantly compared to the
non-optimized transfer. We plan to extent an optimized
algorithm in Mobile-Grid Environment.

REFERENCES

[11 Dengpan Yin,Esma Yildirim, Sivakumar Kulasekaran,
Brandon Ross and Tevfik kosar, “A Data throughput
Prediction & Optimization service for widely Distributed
Many-Task Computing”. Proc. IEEE Transactions on
Parallel and Distributed Systems, Vol 22. No 8, June
2011.

[2] Esma Yildirim, Dengpan Yin, Tevfik Kosar, “Prediction
of Optimal Parallelism Level in Wide Area Data
Transfers” |EEE Transactions on Parallel and
Distributed Systems , VOL. XX, NO. XX, 2010

[3] Takeshi Ito,Hiroyuki Ohsaki, and Makoto Imase, “On
Parameter Tuning of Data Transfer Protocol GridFTP
for Wide-Area Networks”. International Journal of
Electrical and Electronics Engineering 2:8 2008.

[4] Thomas J.Hacker,Brain D.Athey, Brain Noble, “The
End-to-End Performance Effects of Parallel TCP
Sockets on a Lossy Wide-Area Network, Proc. IEEE
2002

[6] H.Sivakumar,S.Bailey, R.L.Grossman, “PSockets: The
Case for Application-level Network Striping for Data
Intensive Applications using High Speed Wide Area
Networks” Proc. |IEEE 2000

[6] Tom Kelly, “Scalable TCP:Improving Performance in
Highspeed Wide Area Networks” Laboratory for
Communication Engineering, Cambridge University
Engineering Department, Cambridge, United Kingdom.
ACM SIGCOMM Computer Communication. Volume 33
Issue 2, April 2003

[71 Dong Lu, Yi Qiao, Peter ADinda, Fabian
E.Bustamante, “Modeling and Taming Parallel TCP on
the Wide Area Network” National Science Foundation.
Proceedings of the 19th IEEE International Parallel and
Distributed Processing, 2005.

[8] Rauf Izmailov,Samrat Ganguly,Nan Tu, “Fast Parallel
File Replication in Data Grid” , NEC Laboratories
America, Princeton, USA. 2004.

[9] Srikumar Venugopal and Rajkumar Buyya, “An
Economy-based Algorithm for Scheduling
Data-Intensive ~ Applications on Global Grids”,
Department of Computer Science and Software
Engineering, The University of Melbourne, Australia.
2004

[10] Srikumar Venugopal and Rajkumar Buyya, “A Grid
Service Broker for Scheduling Distributed
Data-Oriented ~ Applications on Global Grids”,
Department of Computer Science and Software
Engineering, The University of Melbourne, Australia.
2"% International Workshop on Middleware in Grid
Computing, October 18,2004.

[11] loan Raicu, lan T.Foster, Yong Zhao, “Many-Task
Computing for Grids and Supercomputers”, Proc .IEEE
Workshop Many-Task Computing on Grids and
Supercomputers(MTAGS),2008.

[12] Srikumar Venugopal and Rajkumar Buyya, “Cost-based
Scheduling for Data-Intensive Applications on Global
Grids”,Grid Computing and Distributed Systems
(GRIDS) Laboratory Department of Computer Science
and Software Engineering. The University of
Melbourne, Australia.. Sep 2011.

